

Encoders

magnetic Encoder, digital outputs, 2 channels, 64 - 1024 lines per revolution

For combination with DC-Micromotors Brushless DC-Motors

Series IE2-1024

		IE2-64	IE2-128	IE2-256	IE2-512	IE2-1024	
Lines per revolution	Ν	64	128	256	512	1 024	
Frequency range, up to ¹⁾	f	20	40	80	160	300	kHz
Signal output, square wave		2					Channels
Supply voltage	U_{DD}	4,5 5,5					V
Current consumption, typical ²⁾	I DD	typ. 9,5, ma	ax. 13				mA
Output current, max.3)	І оит	5					mA
Phase shift, channel A to B	Φ	90 ± 45					°e
Signal rise/fall time, max. (CLOAD = 50 pF)	tr/tf	0,1 / 0,1					μs
Inertia of sensor magnet ⁴⁾	J	0,09					gcm ²
Operating temperature range		-25 +85					°C

⁴⁾ For the brushless DC-Servomotors the inertia of sensor magnet is: $J = 0.14 \text{ gcm}^2$

For combination with Moto	
Dimensional drawing A	<l1 [mm]<="" td=""></l1>
1336 CXR - 123	47,5
Dimensional drawing B	<l1 [mm]<="" td=""></l1>
1516 SR	18,2
1524 SR	26,2
1717 SR	19,4
1724 SR	26,4
2224 SR	26,6
2232 SR	34,6
Dimensional drawing C	<l1 [mm]<="" td=""></l1>
1727 CXR - 123	38,2
1741 CXR - 123	52,2
Dimensional drawing D	<l1 [mm]<="" td=""></l1>
1628 B - K313	38,8
2036 B - K313	46,8
2057 B - K313	68,3

Characteristic

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors and Brushless DC-Servomotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only 1,4 mm. Built-on option for DC-Micromotors and Brushless DC-Servomotors.

Hybrid circuits with sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

To view our large range of accessory parts, please refer to the "Accessories" chapter.

¹⁾ Velocity (min-1) = $f(Hz) \times 60/N$

²⁾ $U_{DD} = 5$ V: with unloaded outputs

 $^{^{3)}}$ $\textit{U}_{\textit{DD}}$ = 5 V: low logic level < 0,5 V, high logic level > 4,5 V: CMOS- and TTL compatible

